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All-In-One Hardware Devices with Event-Based Vision
Sensor Arrays for Image Sensing, Computing, and Learning

Sen Zhang, Pingdan Xiao, Xitong Hong, Ruohao Hong, Chang Liu, Qianlei Tian,
Wanhan Su, Chao Ma, Xingqiang Liu, Kenli Li, Johnny C. Ho, Yawei Lv, Qinghui Hong,*
Lei Liao,* and Xuming Zou*

Metal oxide semiconductors (MOSs) are considered as potential candidates
for the low-cost, large-area fabrication of flexible optoelectronic devices.
However, the current optoelectronic devices based on MOSs are limited to
unidirectional photoresponse, which constrains the performance of
MOSs-based vision sensors for artificial vision systems. Herein, for the first
time, a flexible artificial vision system integrated with optical perception,
computation, and learning functionalities is demonstrated using SnO
optoelectronic synaptic transistor-based event-driven vision sensors to enable
dynamic image perception, noise reduction, detection, and recognition.
Specifically, an ambipolar SnO transistor is demonstrated by introducing
HfO2 passivation layer, which facilitates the movement of O atoms around
Sn-vacancy sites to the HfO2 layer to achieve the transformation from p-type
to ambipolar transport behaviors. More importantly, the HfO2-passivated SnO
transistors exhibit gate-tunable bidirectional photoresponse behavior, which
is essential to simulate the neurobiological functionalities of bipolar cells. This
way, the multilayer neural network learning circuit built from SnO transistors
achieves fast recognition at a 16% Gaussian noise level and high recognition
accuracy up to 95.2% for pattern letters. Under the bending states, recognition
accuracies are still retained at 91.2%. These properties are well retained even
under the influence of 100% offset of the synaptic programming value.

1. Introduction

The current artificial vision sensors and systems usually gener-
ate lots of redundant data from a series of frame-based visual
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information processing. This massive
amount of data would inevitably limit the
application and development of these vision
systems with increasing demand for real-
time, automatic, and efficient information
processing.[1–3] In comparison, the human
retina can simultaneously detect and pro-
cess visual information and substantially
accelerates motion detection and recog-
nition through integrated signal sensing,
processing, and learning of advanced visual
systems. Therefore, this phenomenon has
inspired the development of electronic
devices-based event cameras for artificial
visual systems.[4,5] Recently, memristive de-
vices have attracted extensive interest due
to the similar structure and transmission
characteristics between memristors and
neural synapses.[4,6] It is worth mentioning
that conventional memristor-based elec-
tronic synapses typically mimic the basic
functionalities of synapses and neurons
by solely applying electric stimuli.[7] This
electric-modulated mode makes the corre-
sponding devices insufficient to simulate
the human visual system (HVS) realistically

since the human retina is more sensitive to light stimuli of the
outside world than electric stimuli.[8,9] To avoid these problems,
novel synaptic devices that can efficiently integrate the light and
electric stimuli co-modulation are urgently needed.[10]
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Because of the unique light-matter interaction, optoelectronic
synaptic transistors are advantageous, compared to memristive
devices, in providing long-term device stability, efficient integra-
tion of different stimuli, and the capability of simultaneously
performing different kinds of artificial vision functions.[11,12]

At present, optoelectronic synaptic transistors based on various
kinds of photosensitive materials and hybrid structures with
inherent persistent photoconductivity have been extensively
achieved, such as quantum dots,[13] 2D materials,[14] oxide
semiconductors,[15,16] and halide perovskites.[17] In particular,
oxide semiconductors materials have been considered as po-
tential candidates for the low-cost, large-area fabrication of
flexible optoelectronic devices owing to their unique optical
transparency properties, high conductivity, and easy integration
in a single material.[18] For instance, vision sensors based on
different oxide semiconductors, including In2O3,[19] IGZO,[20]

ZnO,[21] and Ga2O3,[22] have been demonstrated for artificial
vision systems. Nevertheless, achieving the event camera would
require displaying the on and off events using excitatory and
inhibitory modulations (bidirectional photoresponse modu-
lations) by all-photonic stimulation.[23] However, the current
artificial vision sensors based on oxide semiconductors are
limited to unidirectional photoresponse, which constrains the
development of vision sensors for artificial vision systems. Until
now, to the best of our knowledge, artificial vision systems based
on oxide semiconductors-implemented event cameras remain
unexplored.

Herein, for the first time, a flexible artificial vision system inte-
grated with optical perception, computation, and learning func-
tionalities is proposed. Specifically, SnO-based optoelectronic
synaptic transistors are employed as event-driven vision sensors
to enable dynamic image perception, noise reduction, detection,
and recognition. One of the key developments is the utilization
of the HfO2 passivation layer for the SnO devices. The density
functional theory (DFT) calculations reveal that this passivation
could facilitate the movement of O atoms around Sn-vacancy
sites to the HfO2 layer to achieve the transformation from p-type
to ambipolar transport behaviors in SnO. More importantly,
through the utilization of the gate-tunable bidirectional photore-
sponse capable of this HfO2-passivated SnO transistor under a
light illumination of 457 nm, the neurobiological functionalities
of bipolar cells are successfully simulated by a single device. This
way, in each recognition progress, the multilayer neural network
learning circuit built from SnO transistors achieves fast recogni-
tion at a 16% Gaussian noise level and high recognition accuracy
up to 95.2% for pattern letters. The recognition accuracies at
the bending state can still retain 91.2%. Benefiting from the
good stability and reliability of the flexible SnO optoelectronic
transistor, these properties are well retained under the influence
of 100% offset of the synaptic programming value, demonstrat-
ing considerable prospects in wearable devices and artificial
vision system. Ultimately, the study establishes the develop-
ment of an all-in-one artificial vision system to enable dynamic
image perception, noise reduction, detection, and recognition,
thus demonstrating the great potential of SnO optoelectronic
transistors in realizing compact and efficient artificial vision
systems.

2. Results and Discussion

In general, the human retina contains various kinds of neurons,
including photoreceptors, bipolar cells, and ganglion cells.[24]

The vision information is received by photoreceptors and trans-
mitted to the bipolar cells to generate positive or negative elec-
trical signals and eventually to the brain, significantly improving
process speed in the brain.[1] Bipolar cells can be classified into
ON-bipolar and OFF-bipolar cells, which respond to light stimuli
with a bidirectional photoresponse. In order to mimic the neuro-
biological functionalities of bipolar cells, we propose to develop
a flexible optoelectronic synapse based on the SnO transistor, as
illustrated in Figure 1a. An optical image of the flexible device ar-
ray on the PI substrate is depicted in Figure 1a inset. The fabrica-
tion process of the SnO optoelectronic synaptic transistor array
is schematically shown in Figure S1 (Supporting Information).
Briefly, a 20 nm-thick SnO film was deposited by radiofrequency
(RF) sputtering at room temperatures in a reactive Ar/O2 gas at-
mosphere. Next, the Cr/Au (10/50 nm) source-drain electrodes
were evaporated on the SnO film by thermal evaporation, and
the HfO2 layer with a thickness of 10 nm was deposited by the
atomic layer deposition (ALD) process at 95 °C. In particular, the
direct growth of HfO2 passivation layer, and then the annealing
treatment was processed at 350 °C for 10 min in ambient air,
which facilitates the introduction of the metallic Sn-related de-
fect states and transition of the channel polarity.[25] From a high-
resolution transmission electron microscopy (HR-TEM) image
and corresponding energy dispersive X-ray spectroscopy (EDS)
line-scanning elemental mapping of a cross-sectional region of
the SnO optoelectronic transistor (Figure S2a,b, Supporting In-
formation), the thickness of SnO and HfO2 is further confirmed,
and the spatial distributions of the atomic contents directly show
the stack structure of device, consistent with the HR-TEM image.

To evaluate the optoelectrical characteristics of our proposed
SnO transistors, the transfer characteristic curves of the un-
passivated and HfO2-passivated SnO transistors under dark and
at various light intensities were measured at a constant drain volt-
age of Vds = −1 V. As shown in Figure 1b, the un-passivated SnO
transistor exhibits a typical p-type transistor characteristic, show-
ing a unidirectional photocurrent response under a light illumi-
nation of 457 nm. In contrast, the HfO2-passivated SnO tran-
sistor exhibits the ambipolar transport behavior under dark and
gate-tunable bidirectional photoresponse behavior under a light
illumination of 457 nm. As shown in Figure S3a (Supporting In-
formation), a significant shift of transfer curves toward the posi-
tive direction and increased off-state current after light illumina-
tion operation with various intensities were observed, suggesting
that the photogating and photoconductive effects dominated the
photocurrent generation of the ambipolar SnO transistor.[26] The
transfer curves are gradually shifted toward the positive direc-
tion after light illumination, indicating the photoexcited electrons
trapped in the HfO2 layer and leaving extra holes in the SnO con-
ducting channel, thereby contributing to an increase in photocur-
rent. This transformation from p-type to ambipolar transport
behaviors under introducing HfO2 passivation layer provides a
physical foundation for achieving a bidirectional photoresponse,
which is significant for mimicking the biological characteristics
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Figure 1. Schematic diagram and optoelectronic characteristics of flexible artificial synapses based on SnO/HfO2 transistors. a) Schematic diagram of
the structure of the artificial synaptic device. The inset depicts an optical image of the device array. b) Transfer characteristic curves of the pristine SnO
and SnO/HfO2 synaptic transistors measured at Vds = −1 V under different light intensities. c) XPS of Sn 3d in un-passivated and HfO2 passivated SnO
film. d) The band structures of Sn-vacancy (left) and Sn-O-vacancy (right) SnO. e) Plight and Vgs dependent photocurrent extracted from the transfer
characteristic curves shown in (b). f) Transfer characteristic curves at different wavelengths. The inset depicts the curve between photoresponsivity and
incident light wavelengths at the same light intensity of 100 mW cm−2.

of bipolar cells. To further evaluate the photoresponse perfor-
mance of the optoelectronic synaptic transistor, photoresponsiv-
ity (R) can be calculated according to the following equation:[27,28]

R =
|||Ilight − Idark

|||
Plight × S

=
|||Iph

|||
Plight × S

(1)

where Idark and Ilight are output current under dark and light illu-
mination, respectively, Plight is incident light intensity, S is effec-
tive illuminated area, and Iph refers to photocurrent. As shown in
Figure S3b (Supporting Information), it is obvious that the pho-
toresponsivity is dependent on the input light intensity and de-
creases with increasing light intensity. Specifically, according to
the Equation (1), the photoresponsivity value of up to 11.5 A W−1

can be obtained at Vgs = −15 V under 457 nm incident laser with
a light intensity of 0.04 mW cm−2 at −1 V bias. X-ray photoelec-
tron spectroscopy (XPS) measurements were carried out to in-
vestigate the chemical bonding state and chemical composition
of the un-passivated and HfO2-passivated SnO films, and the cor-
responding results are given in Figure 1c. Here, the HfO2 passi-
vation layer is speculated to introduce metallic Sn-related states,
enabling the transformation from p-type to ambipolar conduct-
ing behaviors in SnO.[25] The typical wide survey XPS spectra of
the un-passivated and HfO2-passivated SnO films are given as
shown in Figure S4 (Supporting Information). The XPS analy-
sis gave the surface atomic percentages of O and Sn elements
in the SnO films (Table S1, Supporting Information). The Sn/O

atomic ratio of the un-passivated SnO films is lower than that of
the HfO2-passivated SnO films, suggesting the O movement of
SnO induced by the HfO2 passivation layer.

The transformation from p-type to ambipolar transport
behaviors in SnO after the HfO2 passivation can be justified
by the DFT calculation. As shown in Figure S5 (Supporting
Information), the p-type behavior in SnO is induced by the Sn
vacancy, whereas the passivation could move the O atoms near
the vacancy to the HfO2 layer due to the strong reducibility of
the Hf atoms, releasing an energy of 3.8–5.04 eV during the
O movement. The band structures of Sn-vacancy and Sn–O-
vacancy containing SnO from the DFT calculation are given in
Figure 1d, in which the p-type and intrinsic doping effects are
observed, verifying that the O movement induced a transport
variation. Significantly, owing to the Vgs and Plight dependence
of the photocurrent (Figure 1e), the ambipolar SnO transistor
exhibits a gate-tunable positive photocurrent (PPC) and negative
photocurrent (NPC) under light illumination of the 457 nm
laser, enabling mimicking the neurobiological functionalities of
bipolar cells during visual information processing in the human
retina. In addition, different optoelectronic performances were
observed when the ambipolar SnO transistor was focused on
light illumination with the same light intensity of 100 mW cm−2

but with various wavelengths, as illustrated in Figure 1f. The
inset in Figure 1f depicts the photoresponsivity as a function
of the incident light wavelengths; the ambipolar SnO transistor
exhibits broadband photoresponse in the wavelength range
from 457 to 1064 nm, which is consistent with the absorption
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Figure 2. Optoelectronic modulated synaptic plasticity performance and mimicry of artificial visual memory. a) Schematic diagram and simplified elec-
trical circuit of biological synapses. b) EPSC and IPSC of the device triggered by light stimuli with 457 nm wavelength (100 mW cm−2, 200 ms) at
Vgs = 3 V and Vgs = 15 V, respectively. c) PPF of the device triggered by the successive pulses with 457 nm wavelength. d) The curve of the PPF index
and interval time between paired successive pulses. The transition from STM to LTM was realized by changing e) the light intensity and f) the number
of pulsed light stimuli.

spectrum of HfO2-passivated SnO films (Figure S6, Supporting
Information).

As a specialized structure of the nerve system, a synapse
consists of the presynaptic membrane, the synaptic cleft, and the
postsynaptic membrane. Electrical stimulation in the presynapse
is converted into the release of excitatory/inhibitory neurotrans-
mitters that blinds the receptors on the postsynapse, leading
to the excitatory/inhibitory postsynaptic current (EPSC/IPSC),
as presented in Figure 2a.[29,30] Due to the gate-tunable NPC
and PPC, our optoelectronic synapse has a significant potential
to mimic various synaptic plasticity. As displayed in Figure 2b,
the modulation of Vgs to 3 and 15 V generated opposite re-
sults by applying light stimuli with a wavelength of 457 nm
(100 mW cm−2, 200 ms), which were triggered to increase
and decrease the photocurrent in the optoelectronic synapse to
mimic both EPSC and IPSC, respectively. In the biological neural
system, paired-pulse facilitation (PPF) is one of the important
synaptic functionality, which is regarded as an essential form
for recognizing and decoding temporary information.[15,30] The
evaluation of PPF behaviors using the SnO/HfO2 optoelectronic
synapse is demonstrated by applying two successive light stimuli
with a time interval Δt, wherein two pulses had a width of 0.2 s
and a light intensity of 100 mW cm−2. Figure 2c indicates that
the EPSC and IPSC triggered by the second light spike (A2) are
significantly enhanced than that triggered by the first light spike
(A1) because of the accumulation of trapped photogenerated
electrons in the HfO2 layer. As shown in Figure 2d, the PPF
index (A2/A1) reduces with the increase of Δt, where the red

dashed line is the result of fitting using a double exponential
decay function, which agrees well with the measured data. The
relationship between the PPF index and the Δt can be fitted by
the following double exponential decay function:[31]

PPF index = C1exp
(
−Δt
𝜏1

)
+ C2exp

(
−Δt
𝜏2

)
+ C0 (2)

where C0 is 100%, which means that the PPF index gradually
converges to 100%, C1 and C2 are the initial facilitation mag-
nitudes of the rapid and slow respective phases, and 𝜏1 and 𝜏2
are the characteristic relaxation time of the rapid and slow de-
cay terms, respectively. Moreover, the fitted values of 𝜏1 and 𝜏2
for the EPSC/IPSC are 1.70/0.58 s (𝜏1) and 2.08/4.80 s (𝜏2),
respectively. The corresponding values of 𝜏1 and 𝜏2 are simi-
lar to the biological synapse, indicating that our optoelectronic
synapse has good potential for simulating the PPF behaviors
of biological synapses. Another important synaptic functional-
ity is the operational transition from short-term memory (STM)
to long-term memory (LTM), also known as memory consoli-
dation, which can be realized by simply increasing the num-
ber and frequency of pulses.[7,32] In Figure 2e,f and Figure S7
(Supporting Information), the increase in intensity, number, and
frequency of pulsed light stimuli has been applied on the de-
vice, resulting in both a higher peak current and retained mem-
ory, which demonstrate that the transition from STM to LTM
can be successfully simulated in our optoelectronic synapse.
With the above frequency-modulated photocurrent response
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Figure 3. Illustration of the event-based visual sensor array for motion detection. a) Three-layer model of the human retina and the corresponding
event-based visual sensor pixel circuit. b) Hardware device circuit design of the event-based visual sensor array for image sensing and pre-processing.
c) EPSC under the light with various light intensities from 1 to 500 mW cm−2, followed by current decay after the light is off. d) Results after detection
and pre-processing of dynamic images.

characteristics (Figure S7, Supporting Information), the interest-
modulated visual memory effect has been well mimicked, as
shown in Figure S8 (Supporting Information). Compared with
neuromorphic characteristics of the optoelectronic synapse un-
der short-wavelength light exposure, various synaptic plasticity
under long-wavelength light exposure have also been well mim-
icked, as shown in Figure S9a–e (Supporting Information).

Retina-inspired artificial vision systems, which can simulate
the biological functions of the HVS, have been extensively devel-
oped because they can combine image sensing, real-time infor-
mation processing, pattern recognition, and learning.[33,34] The
HVS is composed of the retina, optic nerve, and visual cortex in
the brain; the retina receives and converts light signals to elec-
trical output signals. After light signals are pre-processed in the
retina, these signals are transmitted to the visual cortex in the
brain through the optic nerve, where visual information can be
further processed to realize the functions of recognition, mem-
ory, and learning.[35] The event camera pixel models a simpli-
fied three-layer retina in the human eye by mimicking the optic
nerve information flow, which consists of the cone or rod pho-
toreceptor cells, on/off bipolar cells, and on/off ganglion cells
(Figure 3a).[36] This structure is replicated by introducing opto-
electronic synapses, and the circuit implementation is shown in
Figure 3a. The event camera contains a SnO/HfO2 optoelectronic
synaptic transistor inspired by the bipolar cells of the human
eye, which can generate a gate-tunable bidirectional optical re-
sponse after sensing an optical stimulus, successfully simulating

the biological function of the bipolar cells and the co-modulation
of optical and electrical operations. Each pixel works indepen-
dently and automatically triggers an ON or OFF event when the
light intensity changes. By constructing the visual sensing array
based on optoelectronic synapses with positive and negative re-
sponse conductivities, the array can achieve image detection and
pre-processing to mimic the functions of the human retinal, as
shown in Figure 3b. First, the moving process of the dynamic
image is detected with an event camera, which only records the
image brightness if there is a relative change in the intensity of
a pixel. After memorizing its static image, it is combined with a
visual sensor array to calculate the differences of image bright-
ness at the moment of t and t+ ∆t, enabling dynamic image
detection and noise reduction. Then, the optoelectronic transis-
tors perceive different light stimuli to generate different pho-
toresponse currents, which are converted to voltage signals by
trans-impedance amplifiers (TIA) before being digitized by the
sampling holder. In the proposed device array and correspond-
ing peripheral circuit, with the help of peripheral circuits in de-
vices array, the set voltage source and TIA achieve can extract
information from moving images based on Kirchhoff’s law and
the characteristics of amplifiers (high input resistance and high
open-loop gain), and thus TIA can the current of extracted infor-
mation convert to voltage signals which facilitate later operation.
Since the proposed device array is to process dynamic images,
the sampling holder is designed to connect with device array,
which not only achieves maintenance of the input voltage signal,
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Figure 4. Design principle and simulation of the self-learning circuit. a) Schematic diagram of a neuronal circuit design based on optoelectronic synapses
that enable automatic online learning on-chip. b) LTP and LTD cycles of artificial synapses in flat and bending states. Simulation results of self-learning
neuron circuit training, c) feedforward calculation, d) feedback adjustment, and e) error calculation. Test results on original and noisy image inputs, f) are
the output results of each neuronal circuit. g) Accuracy of the simulation process in different states with offsetting the synaptic programming value.

but also is helpful for the next learning and recognition by us-
ing analog circuits. The pre-processed images are fed as voltage
signals into a circuit-implemented multilayer neural network for
on-chip learning. Figure 3c and Figure S9f (Supporting Informa-
tion) show the modulation effect of light intensity on the EPSC,
indicating that the conductance decay trend depends on the light
intensity. When irradiated at higher intensities, the conductance
gradually decreases when the light is turned off and eventually re-
mains relatively high above the initial state (Figure S10, Support-
ing Information), which can be considered as LTM. We detect the
dynamic images using this property and further pre-process the
captured static images. Three different pattern letters (“H,” “N,”
and “U”) are proposed in the simulation experiment, each pat-
tern letter is composed of a 5 × 5 binary image, which can be de-

scribed as 25 binary inputs x1−x25. The results of pre-processed
static images as voltage signals in the pixel-based vision sensor
array are shown in Figure 3d and Figure S9g (Supporting Infor-
mation), indicating that the pre-processed image noise is further
reduced than the initial image; the pre-processed images are then
passed in voltage signals into a multilayer neural network learn-
ing circuit for on-chip learning.

Generally, the learning circuit consists of neuron circuit mod-
ule, sampling holder, error calculation module, feedback adjust-
ment module, and input interface, as shown in Figure 4a. When
the event-based vision sensor array captures information from
the outside environment, the outdoor signal will be sensed, de-
noised, and converted into a voltage signal suitable for subse-
quent learning and recognition. The voltage signal first flows into
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the synapse array of the neuron circuit module when the switch
composed of the trans-impedance amplifier and resistors turn
on. First, the working principle of the synapse array is as the
following:[37]

V− − V+ = Rf ×
[(

G1a − G1b

)
× V1 + ⋯ +

(
Gna − Gnb

)
× Vn

]
(3)

where V− and V+ are the respective input voltages of the op-
erational amplifiers (hereafter referred to as OAs); Gna, b and
Vn represent the weight parameter of the learning algorithm
and input signal, respectively; Rf and OAs consist of the trans-
impedance amplifier (hereafter referred to as TIA), which can
transform input current into voltage. According to Ohm’s laws
and Kirchhoff’s law, the above equation can achieve multiplying
and accumulating (henceforth referred to as MAC) of synapse
for input signal and weight parameter. After the MAC operation
for the input signal, the synapse will have a different output
value based on the value of the signal. Therefore, the neuron
circuit module would export different output voltages with the
activation circuit. The operation principle of the activation circuit
is as the following:

Vout =
⎧⎪⎨⎪⎩

VDD, Vout < VDD
Rd

Rf

(
V− − V+

)
, VDD ≤ Vout ≤ VCC

VCC, Vout > VCC

(4)

where VDD and VCC are the respective supply voltages of the op-
erational amplifiers, Rd, Rf are the resistance of the activation cir-
cuit, the ratio of which can achieve control of the output signal
value based on the working principle of OA and the subtraction
circuit when Vout is in the range of [VDD, VCC].

The sampling holder in Figure 4a can retain the input signal
value from the neuron circuit module, which consists of the com-
plementary metal-oxide-semiconductor (CMOS) switch and ca-
pacitor. When the control voltage VC is positive and −VC is a neg-
ative voltage, the CMOS switch turns on, the input signal charges
the capacitors, and the output port of the sampling holder retains
the input value. On the contrary, the capacitors will discharge
when the switch turns off due to the negative VC and the pos-
itive −VC. Based on the above analysis, the module can achieve
the function of the holding voltage. The maintained voltage must
be processed to learn further and recognize. The error calcula-
tion module can obtain the difference between the realistic and
ideal signals, which corresponds to the cost function in the learn-
ing algorithm, facilitating subsequent self-adjustment, and learn-
ing. The module in Figure 4a is composed of CMOS transistors
and resistances. It can achieve the comparison between the in-
put value Vi and the ideal value Vt, and export the different value
Vo and its corresponding negative value −Vo. These results will
be transmitted to the feedback adjustment module and the input
interface in order to adjust the weight parameter and the conse-
quent learning task.

The feedback adjustment module consists of transistors (in-
cluding CMOS transistors), some of which compose the switches
for controlling the result from the error calculation module.
Moreover, the other transistors comprise a control cell similar to

the above switch, which is connected to the input interface and
synapse array using the feedback structure. After the switches of
the synapse array turn on, the learning circuit is in the mode of
weight adjustment. When the control signal VC is positive, the
switch turns on, and the signal flows into the feedback adjust-
ment module. When the input signal Vn (n = 1, 2, 3, …) is a pos-
itive voltage, the upper transistor will turn on, and the bottom
transistor will turn off in Figure 4a; this way, the voltage Vo will
be applied to the synapse array. On the contrary, a negative input
signal Vn will turn the bottom transistor on and turn the upper
transistor off; the voltage −Vo will be applied to the synapse array.
The sign of Vo and −Vo determine whether the weight parameter
increases or decreases, which achieves the above circuit’s learn-
ing function. Based on the learning circuit, the whole neural net-
work structure for the learning tasks is illustrated in Figure S11
(Supporting Information).

To adjust different synaptic weights of the visual sensing ar-
ray, different conductance states can be obtained by applying
multiple-pulse light stimuli to the optoelectronic synaptic tran-
sistor. Fifty consecutive pulse light stimuli with a wavelength
of 457 nm were applied to the optoelectronic synapse at a gate
voltage of 3 and 15 V, respectively; the long-term potentiation
(LTP) and long-term depressing (LTD) cycles of the optoelectronic
synapse in the flat and bending states are shown in Figure 4b.
All neurons are connected to the next layer of neurons through
the synaptic weight. The neural network’s synaptic weight is
considered the conductance difference between two optoelec-
tronic synapses, and the experimental data are extracted from
the LTP/LTD curves. Then, the whole training process was sim-
ulated by PSPICE. The learning and recognition results of the
three learning circuits are shown in Figure 4c and Figure S12a,d
(Supporting Information). The feedback adjustment results dur-
ing each cycle are shown in Figure 4d and Figure S12b,e (Sup-
porting Information). The error adjustment results during each
cycle are shown in Figure 4e and Figure S12c,f (Supporting In-
formation). The simulation results show that the training of the
three learning neurons is synchronized. Feedforward computa-
tion and feedback adjustment are alternated in each learning cir-
cuit with parallel operations. As the training period increases, the
output of the three learning neurons gradually approaches the
target, while the error signal will gradually decrease. The train-
ing stops when the error obtained by the three neurons does not
exceed the set threshold voltage representing the training target.

Figure 4f shows the simulation results of the learning circuit
for the performance testing. The original training images are
added to the trained multilayer neural network, and the corre-
sponding outputs of neurons 1, 2, and 3 are shown in the first col-
umn of Figure 4f. The outputs of the three neurons are coincided
with the desired outputs, indicating that the proposed learning
circuit performs the image recognition task well. Later, 4–16%
Gaussian noise is added to the input image, and the correspond-
ing outputs are shown in the remaining columns of Figure 4f. Al-
though there is a small deviation between the output and the ex-
pected value, the learning circuit still classifies the input images
correctly due to the distinguishing voltage of 0 V. These results
imply that the proposed learning circuit has good robustness to
input signal fluctuation with the help of the adopted closed-loop
circuit structure. Figure 4g shows the statistics of image recogni-
tion accuracy at different conditions. The recognition accuracies
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of the learning circuit at different conditions can reach 95.2%,
94.1%, 92.5%, and 91.2%, respectively, and the recognition accu-
racy in the curved state is slightly different from that in the flat
state. These findings indicate the considerable potential of the
proposed optoelectronic synapse in developing a flexible artificial
vision system. Since the initial values of the vision sensor array
are set randomly, the device programming values exist within a
certain degree of offset. The effect of different degrees of offsets
on the recognition accuracy of the learning circuit is small, and
the learning accuracy can still reach 93.3%, 92.6%, 91.1%, and
90.0%, demonstrating good robustness. The long-term potenti-
ation (LTP) and long-term depressing (LTD) cycles of the opto-
electronic synapse under a wavelength of 1064 nm are shown
in Figure S9h (Supporting Information). Figure S9i (Supporting
Information) shows the statistics of image recognition accuracy
at different offsets under short-wavelength and long-wavelength
light exposure, and the recognition accuracies of both are com-
parable.

3. Conclusion

In conclusion, our findings indicate that the developed system
has the characteristics of integrating sensing, computing, and
learning and also can realize dynamic image perception, noise
reduction, detection, and recognition. Specifically, the SnO/HfO2
optoelectronic synaptic transistor, inspired by the bipolar cells
of the human eye, can realize the co-modulation of optical and
electronic operations. It can also generate gate-tunable EPSC and
IPSC optoelectronic properties, allowing for image noise reduc-
tion processing. More importantly, the visual sensing array con-
structed based on the optoelectronic synapses can achieve dy-
namic event-based image detection. A multilayer neural network
learning circuit can further enable on-chip learning, making fast
image detection and successful recognition possible. Our pro-
posed event camera-based artificial vision system not only con-
tributes to the development of event-based dynamic image detec-
tion technology but also offers the application possibility in the
fields such as autonomous driving, robot control, and security
monitoring.

4. Experimental Section
Device Fabrication: The SnO/HfO2 optoelectronic synaptic transistors

were fabricated on the PI substrate. The Cr/Au (10/50 nm) electrodes were
patterned from bottom to top using thermal evaporation. Then, a 20 nm
thick SnO film was deposited from a metallic Sn target onto the PI sub-
strate by RF magnetron sputtering at room temperature with a single tin
target (99.999%, HZAM). The deposition was conducted at a power of
38 W at room temperature under a pressure of 0.75 Pa. During the depo-
sition, the oxygen partial pressure was 15%. The first annealing treatment
was performed at 250 °C for 10 min in ambient air. After that, a 10 nm thick
HfO2 was deposited by ALD at 95 °C, and the growth rate of the HfO2 films
was 1.25 Å per cycle. The second annealing treatment was performed at
350 °C for 10 min in ambient air. Finally, the SnO/HfO2 optoelectronic
synaptic transistor arrays were realized by thermal evaporation of Cr/Au
(10/50 nm) as the gate electrodes.

Material Characterization and Device Measurement: The high-
resolution TEM image was obtained by JEOL JEM-2100F TEM/scanning
TEM instrument operating at 200 kV, equipped with an Oxford INCA
energy-dispersive spectroscopy detector and a Gatan Enfina EELS

spectrometer for elemental mapping. The absorption spectrum was char-
acterized by the UV−vis spectrometer (Shimadzu UV-2550). The chemical
composition of SnO film was characterized by XPS. The electrical and
optoelectrical measurements were measured by the semiconductor pa-
rameter analyzer (Agilent B1500A). The incident light sources were lasers
with wavelengths of 457, 532, 660, 808, 914, and 1064 nm, respectively.

First-Principle Calculation: The DFT calculation was performed by an
open-source code QUANTUM ESPRESSO.[38] The ultrasoft pseudopo-
tentials were from the PSlibrary v1.0.0, and the Perdew–Burke–Ernzerhof
(PBE) functionals were adopted.[39] The plane-wave cut-off energies were
47 Ry, according to the library suggestion. The structures were fully relaxed
using the Broyden–Fletcher–Goldfarb–Shanno (BFGS) quasi-newton algo-
rithm until the energy variation and atom forces in the three directions
were smaller than 10−4 Ry and 10−4 Ry Bohr−1, respectively. In the bulk
SnO model, the unit cell was expanded by 3 × 3 × 2 before the defect in-
ducing, resulting an 11.59 × 11.59 × 9.83 supercell size. The Fermi–Dirac
smearing scheme was adopted with a smearing width of 0.026 eV to guar-
antee the accuracy of the Fermi level, and the Brillouin zone k-point sam-
pling was 2 × 2 × 2 at the electronic ground-state computations.

Simulation Method: The whole automatic online learning process of
the learning circuit was simulated by PSPICE, and all data for the image
sensing, computing, and learning processes came from realistic experi-
mental metadata based on the SnO/HfO2 optoelectronic synaptic tran-
sistor vision sensor.

Supporting Information
Supporting Information is available from the Wiley Online Library or from
the author.

Acknowledgements
This work was supported by the National Key Research and Develop-
ment Program of the Ministry of Science and Technology (Grant No.
2021YFA1200700, 2022YFB4400100), the China National Funds for Dis-
tinguished Young Scientists Grant 61925403, the China National Funds
for Outstanding Young Scientists Grant 62122024, the National Nat-
ural Science Foundation of China (Grant Nos. 62134001, 12174094,
62274060, 62001163, and 62234008), the Natural Science Foundation of
Hunan Province (Grant Nos. 2021RC5004, and 2021JJ20028), the Guang-
dong Basic and Applied Basic Research Foundation-Regional Joint Fund
(2020B1515120040), the Shenzhen Science and Technology Research
Funding (JCYJ20200109115408041), the Key Research and Development
Plan of Hunan Province under Grant (Nos. 2022WK2001), and the Natu-
ral Science Foundation of Changsha (Grant Nos. kq2004002).

Conflict of Interest
The authors declare no conflict of interest.

Data Availability Statement
The data that support the findings of this study are available from the cor-
responding author upon reasonable request.

Keywords
event cameras, on-chip learning, optoelectronic synapses, SnO, vision
sensors

Received: June 1, 2023
Revised: August 7, 2023

Published online: August 30, 2023

Adv. Funct. Mater. 2023, 33, 2306173 © 2023 Wiley-VCH GmbH2306173 (8 of 9)

 16163028, 2023, 44, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/adfm

.202306173 by C
ity U

niversitaet O
f H

ong K
ong, W

iley O
nline L

ibrary on [10/12/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



www.advancedsciencenews.com www.afm-journal.de

[1] C.-Y. Wang, S.-J. Liang, S. Wang, P. Wang, Z. a. Li, Z. Wang, A. Gao, C.
Pan, C. Liu, J. Liu, Sci. Adv. 2020, 6, eaba6173.

[2] F. Wang, F. Hu, M. Dai, S. Zhu, F. Sun, R. Duan, C. Wang, J. Han, W.
Deng, W. Chen, Nat. Commun. 2023, 14, 1938.

[3] F. Liao, F. Zhou, Y. Chai, J. Semicond. 2021, 42, 013105.
[4] Q. Wu, B. Dang, C. Lu, G. Xu, G. Yang, J. Wang, X. Chuai, N. Lu, D.

Geng, H. Wang, Nano Lett. 2020, 20, 8015.
[5] Z. Zhang, S. Wang, C. Liu, R. Xie, W. Hu, P. Zhou, Nat. Nanotechnol.

2022, 17, 27.
[6] B. Sun, T. Guo, G. Zhou, S. Ranjan, Y. Jiao, L. Wei, Y. N. Zhou, Y. A.

Wu, Mater. Today Phys. 2021, 18, 100393.
[7] X. Yan, J. Zhao, S. Liu, Z. Zhou, Q. Liu, J. Chen, X. Y. Liu, Adv. Funct.

Mater. 2018, 28, 1705320.
[8] F.-S. Yang, M. Li, M.-P. Lee, I.-Y. Ho, J.-Y. Chen, H. Ling, Y. Li, J.-K.

Chang, S.-H. Yang, Y.-M. Chang, Nat. Commun. 2020, 11, 2972.
[9] J.-L. Meng, T.-Y. Wang, L. Chen, Q.-Q. Sun, H. Zhu, L. Ji, S.-J. Ding,

W.-Z. Bao, P. Zhou, D. W. Zhang, Nano Energy 2021, 83, 105815.
[10] S. Gao, G. Liu, H. Yang, C. Hu, Q. Chen, G. Gong, W. Xue, X. Yi, J.

Shang, R.-W. Li, ACS Nano 2019, 13, 2634.
[11] K. Liang, R. Wang, B. Huo, H. Ren, D. Li, Y. Wang, Y. Tang, Y. Chen,

C. Song, F. Li, ACS Nano 2022, 16, 8651.
[12] N. Ilyas, J. Wang, C. Li, D. Li, H. Fu, D. Gu, X. Jiang, F. Liu, Y. Jiang,

W. Li, Adv. Funct. Mater. 2022, 32, 2110976.
[13] C. Jo, J. Kim, J. Y. Kwak, S. M. Kwon, J. B. Park, J. Kim, G. S. Park, M.

G. Kim, Y. H. Kim, S. K. Park, Adv. Mater. 2022, 34, 2108979.
[14] W. Wang, S. Gao, Y. Li, W. Yue, H. Kan, C. Zhang, Z. Lou, L. Wang, G.

Shen, Adv. Funct. Mater. 2021, 31, 2101201.
[15] Y.-X. Hou, Y. Li, Z.-C. Zhang, J.-Q. Li, D.-H. Qi, X.-D. Chen, J.-J. Wang,

B.-W. Yao, M.-X. Yu, T.-B. Lu, J. Zhang, ACS Nano 2021, 15, 1497.
[16] F. Zhou, Z. Zhou, J. Chen, T. H. Choy, J. Wang, N. Zhang, Z. Lin, S.

Yu, J. Kang, H. S. P. Wong, Y. Chai, Nat. Nanotechnol. 2019, 14, 776.
[17] Z. Yuan, C. Zhou, Y. Tian, Y. Shu, J. Messier, J. C. Wang, L. J. Van De

Burgt, K. Kountouriotis, Y. Xin, E. Holt, Nat. Commun. 2017, 8, 14051.
[18] J. Shi, J. Zhang, L. Yang, M. Qu, D. C. Qi, K. H. Zhang, Adv. Mater.

2021, 33, 2006230.
[19] S. Chen, Z. Lou, D. Chen, G. Shen, Adv. Mater. 2018, 30, 1705400.
[20] B. Wang, A. Thukral, Z. Xie, L. Liu, X. Zhang, W. Huang, X. Yu, C. Yu,

T. J. Marks, A. Facchetti, Nat. Commun. 2020, 11, 2405.
[21] L. Chen, J.-W. Ye, H.-P. Wang, M. Pan, S.-Y. Yin, Z.-W. Wei, L.-Y. Zhang,

K. Wu, Y.-N. Fan, C.-Y. Su, Nat. Commun. 2017, 8, 15985.

[22] Y. Qin, L.-H. Li, Z. Yu, F. Wu, D. Dong, W. Guo, Z. Zhang, J.-H. Yuan,
K.-H. Xue, X. Miao, S. Long, Adv. Sci. 2021, 8, 2101106.

[23] S. M. Kwon, J. Y. Kwak, S. Song, J. Kim, C. Jo, S. S. Cho, S. J. Nam, J.
Kim, G. S. Park, Y. H. Kim, Adv. Mater. 2021, 33, 2105017.

[24] Y. Zhang, L. Wang, Y. Lei, B. Wang, Y. Lu, Y. Yao, N. Zhang, D. Lin, Z.
Jiang, H. Guo, ACS Nano 2022, 16, 20937.

[25] H. Luo, L. Liang, H. Cao, M. Dai, Y. Lu, M. Wang, ACS Appl. Mater.
Interfaces 2015, 7, 17023.

[26] H. Fang, W. Hu, Adv. Sci. 2017, 4, 1700323.
[27] J. Hao, Y.-H. Kim, N. Habisreutinger Severin, P. Harvey Steven, M.

Miller Elisa, M. Foradori Sean, S. Arnold Michael, Z. Song, Y. Yan, M.
Luther Joseph, L. Blackburn Jeffrey, Sci. Adv. 2021, 7, eabf1959.

[28] Z. Lin, Q. Chen, Y. Yan, Y. Liu, E. Li, W. Yu, H. Chen, T. Guo, IEEE
Electron Device Lett. 2021, 42, 1358.

[29] S. Dai, Y. Zhao, Y. Wang, J. Zhang, L. Fang, S. Jin, Y. Shao, J. Huang,
Adv. Funct. Mater. 2019, 29, 1903700.

[30] C. M. Yang, T. C. Chen, D. Verma, L. J. Li, B. Liu, W. H. Chang, C. S.
Lai, Adv. Funct. Mater. 2020, 30, 2001598.

[31] S. Wang, C. Chen, Z. Yu, Y. He, X. Chen, Q. Wan, Y. Shi, D. W. Zhang,
H. Zhou, X. Wang, P. Zhou, Adv. Mater. 2019, 31, 1806227.

[32] J. Tao, D. Sarkar, S. Kale, P. K. Singh, R. Kapadia, Nano Lett. 2020, 20,
7793.

[33] J.-K. Han, D.-M. Geum, M.-W. Lee, J.-M. Yu, S. K. Kim, S. Kim, Y.-K.
Choi, Nano Lett. 2020, 20, 8781.

[34] S. M. Kwon, S. W. Cho, M. Kim, J. S. Heo, Y. H. Kim, S. K. Park, Adv.
Mater. 2019, 31, 1906433.

[35] T. J. Lee, K. R. Yun, S. K. Kim, J. H. Kim, J. Jin, K. B. Sim, D. H. Lee, G.
W. Hwang, T. Y. Seong, Adv. Mater. 2021, 33, 2105485.

[36] G. Chen, H. Cao, J. Conradt, H. Tang, F. Rohrbein, A. Knoll, IEEE Signal
Process Mag 2020, 37, 34.

[37] R. Yan, Q. Hong, C. Wang, J. Sun, Y. Li, IEEE Trans. Comput.-Aided Des.
Integr. 2022, 41, 3000.

[38] P. Giannozzi, O. Andreussi, T. Brumme, O. Bunau, M. Buongiorno
Nardelli, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, M.
Cococcioni, N. Colonna, I. Carnimeo, A. Dal Corso, S. de Gironcoli,
P. Delugas, R. A. DiStasio, A. Ferretti, A. Floris, G. Fratesi, G. Fugallo,
R. Gebauer, U. Gerstmann, F. Giustino, T. Gorni, J. Jia, M. Kawamura,
H. Y. Ko, A. Kokalj, E. Küçükbenli, M. Lazzeri, et al., J. Phys.: Condens.
Matter 2017, 29, 465901.

[39] W. Zhang, R. Hong, W. Qin, Y. Lv, J. Ma, L. Liao, K. Li, C. Jiang, J. Phys.:
Condens. Matter 2022, 34, 404003.

Adv. Funct. Mater. 2023, 33, 2306173 © 2023 Wiley-VCH GmbH2306173 (9 of 9)

 16163028, 2023, 44, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/adfm

.202306173 by C
ity U

niversitaet O
f H

ong K
ong, W

iley O
nline L

ibrary on [10/12/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense


